By Topic

Implementation Strategies for Hyperspectral Unmixing Using Bayesian Source Separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Frédéric Schmidt ; European Space Astronomy Centre, European Space Agency, Madrid, Spain ; Albrecht Schmidt ; Erwan Treguier ; Maël Guiheneuf
more authors

Bayesian positive source separation (BPSS) is a useful unsupervised approach for hyperspectral data unmixing, where numerical nonnegativity of spectra and abundances has to be ensured, such as in remote sensing. Moreover, it is sensible to impose a sum-to-one (full additivity) constraint to the estimated source abundances in each pixel. Even though nonnegativity and full additivity are two necessary properties to get physically interpretable results, the use of BPSS algorithms has so far been limited by high computation time and large memory requirements due to the Markov chain Monte Carlo calculations. An implementation strategy that allows one to apply these algorithms on a full hyperspectral image, as it is typical in earth and planetary science, is introduced. The effects of pixel selection and the impact of such sampling on the relevance of the estimated component spectra and abundance maps, as well as on the computation times, are discussed. For that purpose, two different data sets have been used: a synthetic one and a real hyperspectral image from Mars.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:48 ,  Issue: 11 )