By Topic

Discovering Activities to Recognize and Track in a Smart Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rashidi, P. ; Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA ; Cook, D.J. ; Holder, L.B. ; Schmitter-Edgecombe, Maureen

The machine learning and pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track activities that people normally perform as part of their daily routines. Although approaches do exist for recognizing activities, the approaches are applied to activities that have been preselected and for which labeled training data are available. In contrast, we introduce an automated approach to activity tracking that identifies frequent activities that naturally occur in an individual's routine. With this capability, we can then track the occurrence of regular activities to monitor functional health and to detect changes in an individual's patterns and lifestyle. In this paper, we describe our activity mining and tracking approach, and validate our algorithms on data collected in physical smart environments.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 4 )