By Topic

Shadow Removal Using Intensity Surfaces and Texture Anchor Points

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eli Arbel ; University of Haifa, Haifa ; Hagit Hel-Or

Removal of shadows from a single image is a challenging problem. Producing a high-quality shadow-free image which is indistinguishable from a reproduction of a true shadow-free scene is even more difficult. Shadows in images are typically affected by several phenomena in the scene, including physical phenomena such as lighting conditions, type and behavior of shadowed surfaces, occluding objects, etc. Additionally, shadow regions may undergo postacquisition image processing transformations, e.g., contrast enhancement, which may introduce noticeable artifacts in the shadow-free images. We argue that the assumptions introduced in most studies arise from the complexity of the problem of shadow removal from a single image and limit the class of shadow images which can be handled by these methods. The purpose of this paper is twofold: First, it provides a comprehensive survey of the problems and challenges which may occur when removing shadows from a single image. In the second part of the paper, we present our framework for shadow removal, in which we attempt to overcome some of the fundamental problems described in the first part of the paper. Experimental results demonstrating the capabilities of our algorithm are presented.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:33 ,  Issue: 6 )