By Topic

Local Manifold Learning-Based k -Nearest-Neighbor for Hyperspectral Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Ma ; Huazhong University of Science and Technology, Wuhan, China ; Melba M. Crawford ; Jinwen Tian

Approaches to combine local manifold learning (LML) and the k -nearest-neighbor (kNN) classifier are investigated for hyperspectral image classification. Based on supervised LML (SLML) and kNN, a new SLML-weighted kNN (SLML-W kNN) classifier is proposed. This method is appealing as it does not require dimensionality reduction and only depends on the weights provided by the kernel function of the specific ML method. Performance of the proposed classifier is compared to that of unsupervised LML (ULML) and SLML for dimensionality reduction in conjunction with the kNN (ULML- kNN and SLML-k NN). Three LML methods, locally linear embedding (LLE), local tangent space alignment (LTSA), and Laplacian eigenmaps, are investigated with these classifiers. In experiments with Hyperion and AVIRIS hyperspectral data, the proposed SLML-WkNN performed better than ULML- kNN and SLML-k NN, and the highest accuracies were obtained using weights provided by supervised LTSA and LLE.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:48 ,  Issue: 11 )