Cart (Loading....) | Create Account
Close category search window
 

Local Manifold Learning-Based k -Nearest-Neighbor for Hyperspectral Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Ma ; Huazhong Univ. of Sci. & Technol., Wuhan, China ; Crawford, M.M. ; Jinwen Tian

Approaches to combine local manifold learning (LML) and the k -nearest-neighbor (kNN) classifier are investigated for hyperspectral image classification. Based on supervised LML (SLML) and kNN, a new SLML-weighted kNN (SLML-W kNN) classifier is proposed. This method is appealing as it does not require dimensionality reduction and only depends on the weights provided by the kernel function of the specific ML method. Performance of the proposed classifier is compared to that of unsupervised LML (ULML) and SLML for dimensionality reduction in conjunction with the kNN (ULML- kNN and SLML-k NN). Three LML methods, locally linear embedding (LLE), local tangent space alignment (LTSA), and Laplacian eigenmaps, are investigated with these classifiers. In experiments with Hyperion and AVIRIS hyperspectral data, the proposed SLML-WkNN performed better than ULML- kNN and SLML-k NN, and the highest accuracies were obtained using weights provided by supervised LTSA and LLE.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 11 )

Date of Publication:

Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.