Cart (Loading....) | Create Account
Close category search window
 

Recursive 3-D motion estimation from a monocular image sequence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Broida, T.J. ; Hughes Aircraft Co., Los Angeles, CA, USA ; Chandrashekhar, S. ; Chellappa, R.

Consideration is given to the design and application of a recursive algorithm to a sequence of images of a moving object to estimate both its structure and kinematics. The object is assumed to be rigid, and its motion is assumed to be smooth in the sense that it can be modeled by retaining an arbitrary number of terms in the appropriate Taylor series expansions. Translational motion involves a standard rectilinear model, while rotational motion is described with quaternions. Neglected terms of the Taylor series are modeled as process noise. A state-space model is constructed, incorporating both kinematic and structural states, and recursive techniques are used to estimate the state vector as a function of time. A set of object match points is assumed to be available. The problem is formulated as a parameter estimation and tracking problem which can use an arbitrarily large number of images in a sequence. The recursive estimation is done using an iterated extended Kalman filter (IEKF), initialized with the output of a batch algorithm run on the first few frames. Approximate Cramer-Rao lower bounds on the error covariance of the batch estimate are used as the initial state estimate error covariance of the IEKF. The performance of the recursive estimator is illustrated using both real and synthetic image sequences

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:26 ,  Issue: 4 )

Date of Publication:

Jul 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.