By Topic

Investigation on the Inclination of Cathode Plasma Jets in High-Current Vacuum Arcs in Magnetic Field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shenli Jia ; State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University , Xi'an, China ; Dingge Yang ; Xintao Huo ; Xiaochuan Song
more authors

The theoretical and experimental studies of cathode plasma jets in vacuum arc and the effect of magnetic field on them have been under way for several years. In this paper, different axial magnetic field electrodes were tested in a vacuum chamber, obvious individual cathode plasma jets were observed, and the cathode-jet inclination was also detected. Based on the numerical calculation of magnetic field in interelectrode region and the measurement of cathode-jet inclination in experimental results, it is proven that the inclination angle of composite magnetic field (the combination of the axial, the azimuthal, and the radial components) is consistent with the inclination angle of cathode plasma jets, which indicates that the cathode plasma jets in the arc column flow along the magnetic-field direction when the high-current vacuum arc is diffused or even constricted slightly. Meanwhile, it was also found that plasma jets far from the cathode surface mixed with each other and became ambiguous when the electrode gap increases to a certain distance.

Published in:

IEEE Transactions on Plasma Science  (Volume:38 ,  Issue: 10 )