Cart (Loading....) | Create Account
Close category search window

The Role of Simulators for Smart Grid Development

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Podmore, R. ; Incremental Syst. Corp., Issaquah, WA, USA ; Robinson, M.R.

The implementation of highly realistic real-time, massive, online, multi-time frame simulations is proposed as a means for building a common vision of smart grid functions among politicians, regulators, managers, operators, engineers, and technicians. These massive simulations will include hundreds of participants that play roles of reliability coordinators, transmission operators, distribution operators, power plant operators, and substation operators. These highly visible drills can demonstrate how the new smart grid systems, people, and processes can all work together economically and reliably. The industry, especially smart grid system designers, can get feedback from low cost, safe, and easily configurable simulations instead of waiting for expensive and hardwired deployments. Direct load control of millions of customer appliances is identified as a silver bullet to build self-healing and maximal flow smart grids that can accommodate large penetrations of intermittent wind and solar generation and rapid load growth due to plug-in electric vehicles. The paper recommends that up to 50% of load be controlled with minimal inconvenience to customers to potentially enhance angle, voltage, frequency, and thermal stability. An expert operator decision model is described with a view to helping system developers build operator-centered and friendly smart grid control systems.

Published in:

Smart Grid, IEEE Transactions on  (Volume:1 ,  Issue: 2 )

Date of Publication:

Sept. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.