By Topic

Automated Load Curve Data Cleansing in Power Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jiyi Chen ; Simon Fraser Univ., Vancouver, BC, Canada ; Wenyuan Li ; Lau, A. ; Jiguo Cao
more authors

Load curve data refers to the electric energy consumption recorded by meters at certain time intervals at delivery points or end user points, and contains vital information for day-to-day operations, system analysis, system visualization, system reliability performance, energy saving and adequacy in system planning. Unfortunately, it is unavoidable that load curves contain corrupted data and missing data due to various random failure factors in meters and transfer processes. This paper presents the B-Spline smoothing and Kernel smoothing based techniques to automatically cleanse corrupted and missing data. In implementation, a man-machine dialogue procedure is proposed to enhance the performance. The experiment results on the real British Columbia Transmission Corporation (BCTC) load curve data demonstrated the effectiveness of the presented solution.

Published in:

Smart Grid, IEEE Transactions on  (Volume:1 ,  Issue: 2 )