By Topic

Educational Data Mining: A Review of the State of the Art

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Romero, C. ; Dept. of Comput. Sci. & Numerical Anal., Univ. of Cordoba, Córdoba, Spain ; Ventura, S.

Educational data mining (EDM) is an emerging interdisciplinary research area that deals with the development of methods to explore data originating in an educational context. EDM uses computational approaches to analyze educational data in order to study educational questions. This paper surveys the most relevant studies carried out in this field to date. First, it introduces EDM and describes the different groups of user, types of educational environments, and the data they provide. It then goes on to list the most typical/common tasks in the educational environment that have been resolved through data-mining techniques, and finally, some of the most promising future lines of research are discussed.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:40 ,  Issue: 6 )