By Topic

Combination of Advanced Inversion Techniques for an Accurate Target Localization via GPR for Demining Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soldovieri, F. ; Inst. for Electromagn. Sensing of the Environ. (IREA), Italian Nat. Res. Council (CNR), Naples, Italy ; Lopera, O. ; Lambot, S.

We used advanced ground-penetrating radar (GPR) inversion techniques for detecting landmines in laboratory conditions. The radar data were acquired with a calibrated vector network analyzer combined with an off-ground monostatic horn antenna, thereby setting up a stepped-frequency continuous-wave radar. Major antenna effects and interactions with the soil and targets were filtered out using frequency-dependent complex antenna transfer functions. The proposed strategy first exploits inversion approaches that are able to give an accurate characterization of the antenna-soil interaction and a reliable estimate of the soil permittivity. The outcomes of this first phase are at the basis of the application of a microwave tomographic approach based on the Born approximation to achieve the imaging of the subsurface. The algorithms were applied for imaging three landmines of different sizes and buried at different depths in sand. Although the radar system was off the ground, the results showed that it was possible to reconstruct all mines, including a shallow plastic mine as small as 5.6 cm in diameter. This last mine was invisible in the raw radar data, and the use of common GPR imaging techniques did not lead to satisfactory results. The proposed integrated method shows great promise for shallow subsurface imaging in a demining context, particularly because it automatically provides accurate information on the shallow soil dielectric permittivity.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 1 )