Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

3D Localization of a Thin Steel Rod Using Magnetic Field Sensors: Feasibility and Preliminary Results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Heinig, M. ; Inst. for Robot. & Cognitive Syst., Univ. of Lubeck, Lübeck, Germany ; Bruder, R. ; Schlaefer, A. ; Schweikard, A.

We present the design, setup and preliminary results for a navigation system based on magnetic field sensors. Our system localizes the tip of a magnetized steel rod with diameter 0.5 mm in a cubic workspace with 30 mm edge length. We plan to localize electrodes and probes during surgeries, e.g. for small animal research like neurosurgery in rats. Only the static magnetic field of the steel rod is needed for localization. Our navigation system does not need any external excitation, wires or alternating magnetic fields. Hence, we avoid undesirable stimulation of the animal's brain and we are able to realize small (0.5 mm) probe diameters to reduce brain damage. Localization of the steel rod's tip is achieved using a nearest neighbor approach. The currently measured sensor values are compared to data stored in a previously generated lookup table. An industrial robot is used to create the lookup table and later to validate the accuracy of the system. Currently, the system has 3 degrees of freedom (DOF). Mean of the difference between true and determined position is -0.53; 0.31; -0.95 [mm] with a standard deviation of 1.13; 1.24; 0.99 [mm] in XYZ, or lower. The influence of different noise sources, e.g. electric currents or metal, on the performance of the system are discussed.

Published in:

Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on

Date of Conference:

18-20 June 2010