By Topic

Seismic Source Quantitative Parameters Retrieval From InSAR Data and Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stramondo, S. ; Ist. Naz. di Geofisica e Vulcanologia, Rome, Italy ; Del Frate, F. ; Picchiani, M. ; Schiavon, G.

The basic idea of this paper relies on the concurrent exploitation of the capabilities of neural networks (NNs) and SAR interferometry (InSAR) for the characterization of a seismic source and the estimation of its geometric parameters. When a moderate-to-strong earthquake occurs, we can apply the InSAR technique to compute a differential interferogram. The earthquake is generated by an active seismogenic fault having its own specific geometry. The corresponding differential interferogram contains, in principle, information concerning the geometry of the seismic source that the earthquake comes from. To perform the inversion operation, a novel approach based on NNs is considered. This requires the generation of a statistically significant number of synthetic interferograms necessary for the network training phase. Each of them corresponds to a different combination of fault geometric parameters. After the training, the network is ready to perform, in real time, the inversion on new differential interferograms. This paper illustrates such a methodology and its validation on a set of experimental data.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 1 )