By Topic

Investigation of Triangular Spamming: A Stealthy and Efficient Spamming Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhiyun Qian ; Univ. of Michigan, Ann Arbor, MI, USA ; Mao, Z.M. ; Yinglian Xie ; Fang Yu

Spam is increasingly accepted as a problem associated with compromised hosts or email accounts. This problem not only makes the tracking of spam sources difficult but also enables a massive amount of illegitimate or unwanted emails to be disseminated quickly. Various attempts have been made to analyze, backtrack, detect, and prevent spam using both network as well as content characteristics. However, relatively less attention has been given to understanding how spammers actually carry out their spamming activities from a network angle. Spammers’ network behavior has significant impact on spammers’ common goal, sending spam in a stealthy and efficient manner. Our work thoroughly investigates a fairly unknown spamming technique we name as triangular spamming that exploits routing irregularities of spoofed IP packets. It is highly stealthy and efficient in that triangular spamming enables 1) exploiting bandwidth diversity of botnet hosts to carry out spam campaigns effectively without divulging precious high-bandwidth hosts and 2) bypassing the current SMTP traffic blocking policies. Despite its relative obscurity, its use has been confirmed by the network operator community. Through carefully devised probing techniques and actual deployment of triangular spamming on Planetlab (a wide-area distributed testbed), we investigate the feasibility, impact of triangular spamming and propose practical detection and prevention methods. From our probing experiments, we found that 97% of the networks which block outbound SMTP traffic are vulnerable to triangular spamming and only 44% of them are listed on Spamhaus Policy Blocking List (PBL).

Published in:

Security and Privacy (SP), 2010 IEEE Symposium on

Date of Conference:

16-19 May 2010