By Topic

Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Markku Makitalo ; Department of Signal Processing, Tampere University of Technology, Tampere, Finland ; Alessandro Foi

The removal of Poisson noise is often performed through the following three-step procedure. First, the noise variance is stabilized by applying the Anscombe root transformation to the data, producing a signal in which the noise can be treated as additive Gaussian with unitary variance. Second, the noise is removed using a conventional denoising algorithm for additive white Gaussian noise. Third, an inverse transformation is applied to the denoised signal, obtaining the estimate of the signal of interest. The choice of the proper inverse transformation is crucial in order to minimize the bias error which arises when the nonlinear forward transformation is applied. We introduce optimal inverses for the Anscombe transformation, in particular the exact unbiased inverse, a maximum likelihood (ML) inverse, and a more sophisticated minimum mean square error (MMSE) inverse. We then present an experimental analysis using a few state-of-the-art denoising algorithms and show that the estimation can be consistently improved by applying the exact unbiased inverse, particularly at the low-count regime. This results in a very efficient filtering solution that is competitive with some of the best existing methods for Poisson image denoising.

Published in:

IEEE Transactions on Image Processing  (Volume:20 ,  Issue: 1 )