By Topic

Blind Fractionally Spaced Equalization and timing synchronization in wireless fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nasir, A.A. ; Sch. of Eng., Australian Nat. Univ., Canberra, ACT, Australia ; Durrani, S. ; Kennedy, R.A.

The development of low-complexity blind techniques for equalization and timing synchronization is of enormous importance in the design of wireless communication systems. In this paper, we propose a practical solution for blind equalization and timing recovery in fast-fading time and frequency selective wireless communication channels. We develop a general framework for Constant Modulus Algorithm (CMA) based joint Fractionally Spaced Equalization (FSE) and timing recovery. We use differential modulation to deal with any arbitrary carrier offset. We propose a data reuse strategy to achieve improved short burst wireless communication in CMA based equalization systems. Our results show that FSE outperforms T-Spaced Equalization (TSE) with approximately 2 times faster Mean Square Error (MSE) convergence and approximately 2 dB gain in Bit Error Rate (BER) performance in wireless fading channels. In addition, we demonstrate that the BER performance of the proposed FSE receiver meets the theoretical bounds with only a few dB loss in Stanford University Interim (SUI) channels, which are relevant to IEEE 802.16.3c standard for Wireless Metropolitan Area Networks.

Published in:

Future Computer and Communication (ICFCC), 2010 2nd International Conference on  (Volume:3 )

Date of Conference:

21-24 May 2010