By Topic

Addressing Missing Values in Kernel-Based Multimodal Biometric Fusion Using Neutral Point Substitution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Poh, N. ; CVSSP, Univ. of Surrey, Guildford, UK ; Windridge, D. ; Mottl, V. ; Tatarchuk, A.
more authors

In multimodal biometric information fusion, it is common to encounter missing modalities in which matching cannot be performed. As a result, at the match score level, this implies that scores will be missing. We address the multimodal fusion problem involving missing modalities (scores) using support vector machines (SVMs) with the neutral point substitution (NPS) method. The approach starts by processing each modality using a kernel. When a modality is missing, at the kernel level, the missing modality is substituted by one that is unbiased with regards to the classification, called a neutral point. Critically, unlike conventional missing-data substitution methods, explicit calculation of neutral points may be omitted by virtue of their implicit incorporation within the SVM training framework. Experiments based on the publicly available Biosecure DS2 multimodal (scores) data set show that the SVM-NPS approach achieves very good generalization performance compared to the sum rule fusion, especially with severe missing modalities.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:5 ,  Issue: 3 )
Biometrics Compendium, IEEE