By Topic

Forensic detection of image manipulation using statistical intrinsic fingerprints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matthew C. Stamm ; Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA ; K. J. Ray Liu

As the use of digital images has increased, so has the means and the incentive to create digital image forgeries. Accordingly, there is a great need for digital image forensic techniques capable of detecting image alterations and forged images. A number of image processing operations, such as histogram equalization or gamma correction, are equivalent to pixel value mappings. In this paper, we show that pixel value mappings leave behind statistical traces, which we shall refer to as a mapping's intrinsic fingerprint, in an image's pixel value histogram. We then propose forensic methods for detecting general forms globally and locally applied contrast enhancement as well as a method for identifying the use of histogram equalization by searching for the identifying features of each operation's intrinsic fingerprint. Additionally, we propose a method to detect the global addition of noise to a previously JPEG-compressed image by observing that the intrinsic fingerprint of a specific mapping will be altered if it is applied to an image's pixel values after the addition of noise. Through a number of simulations, we test the efficacy of each proposed forensic technique. Our simulation results show that aside from exceptional cases, all of our detection methods are able to correctly detect the use of their designated image processing operation with a probability of 99% given a false alarm probability of 7% or less.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:5 ,  Issue: 3 )