By Topic

A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Blackmore, L. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Ono, M. ; Bektassov, A. ; Williams, B.C.

Robotic systems need to be able to plan control actions that are robust to the inherent uncertainty in the real world. This uncertainty arises due to uncertain state estimation, disturbances, and modeling errors, as well as stochastic mode transitions such as component failures. Chance-constrained control takes into account uncertainty to ensure that the probability of failure, due to collision with obstacles, for example, is below a given threshold. In this paper, we present a novel method for chance-constrained predictive stochastic control of dynamic systems. The method approximates the distribution of the system state using a finite number of particles. By expressing these particles in terms of the control variables, we are able to approximate the original stochastic control problem as a deterministic one; furthermore, the approximation becomes exact as the number of particles tends to infinity. This method applies to arbitrary noise distributions, and for systems with linear or jump Markov linear dynamics, we show that the approximate problem can be solved using efficient mixed-integer linear-programming techniques. We also introduce an important weighting extension that enables the method to deal with low-probability mode transitions such as failures. We demonstrate in simulation that the new method is able to control an aircraft in turbulence and can control a ground vehicle while being robust to brake failures.

Published in:

Robotics, IEEE Transactions on  (Volume:26 ,  Issue: 3 )