By Topic

Learning Similarity With Multikernel Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Tang ; Key Lab. of Appl. Math., Hubei Univ., Wuhan, China ; Luoqing Li ; Xuelong Li

In the field of machine learning, it is a key issue to learn and represent similarity. This paper focuses on the problem of learning similarity with a multikernel method. Motivated by geometric intuition and computability, similarity between patterns is proposed to be measured by their included angle in a kernel-induced Hilbert space. Having noticed that the cosine of such an included angle can be represented by a normalized kernel, it can be said that the task of learning similarity is equivalent to learning an appropriate normalized kernel. In addition, an error bound is also established for learning similarity with the multikernel method. Based on this bound, a boosting-style algorithm is developed. The preliminary experiments validate the effectiveness of the algorithm for learning similarity.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 1 )