By Topic

A neural network-based algorithm to detect dominant points from the chain-code of a contour

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. M. Sanchiz ; Univ. Jaume I. Castello, Spain ; J. M. Inesta ; F. Pla

A new algorithm for dominant point detection in chain-coded contours is presented. The algorithm directly operates on the chain-code link values. No computation of the (x,y) co-ordinates of the contour points is done, nor any classical computation of the curvature or its derivative. Instead, a dynamic neural network traverses the contour giving a measurement of the relevance of each point, further and simple processing provides the dominant points. The network is trained with the result that a classical dominant point detection algorithm gives for the training contours, and using as training set a number of contours extracted from natural images. Results with real and test images are presented that show the reliability of the proposed algorithm. Since this algorithm is based on applying a neural network to the contour, it significantly reduces the execution time of existing dominant point detection algorithms. Computational time measurements are presented

Published in:

Pattern Recognition, 1996., Proceedings of the 13th International Conference on  (Volume:4 )

Date of Conference:

25-29 Aug 1996