By Topic

The Effects of Priority Levels and Buffering on the Statistical Multiplexing of Single-Layer H.264/AVC and SVC Encoded Video Streams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Srinivasan, S.K. ; Sch. of Comput., Inf., & Decision Syst. Eng., Arizona State Univ., Tempe, AZ, USA ; Vahabzadeh-Hagh, J. ; Reisslein, M.

H.264/Advanced Video Coding (AVC) employs classical bi-directional encoded (B) frames that depend only on intra-coded (I) and predictive encoded (P) frames. In contrast, H.264 Scalable Video Coding (SVC) employs hierarchical B frames that depend on other B frames. A fundamental question is how many priority levels single-layer H.264 video encodings require when the encoded frames are statistically multiplexed in transport networks. We conduct extensive simulation experiments with a modular statistical multiplexing structure to uncover the impact of priority levels for a wide range of multiplexing policies. For the bufferless statistical multiplexing of both H.264/AVC and SVC we find that prioritizing the frames according to the number of dependent frames can increase the number of supported streams up to approximately 8%. In contrast, for buffered statistical multiplexing with a relatively small buffer size, frame prioritization does generally not increase the number of supported streams.

Published in:

Broadcasting, IEEE Transactions on  (Volume:56 ,  Issue: 3 )