By Topic

Global Manipulation Planning in Robot Joint Space With Task Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mike Stilman ; Robotics and Intelligent Machines Center, Department of Interactive Computing, Georgia Institute of Technology, Atlanta, USA

We explore global randomized joint-space path planning for articulated robots that are subjected to task-space constraints. This paper describes a representation of constrained motion for joint-space planners and develops two simple and efficient methods for constrained sampling of joint configurations: tangent-space sampling (TS) and first-order retraction (FR). FR is formally proven to provide global sampling for linear task-space transformations. Constrained joint-space planning is important for many real-world problems, which involves redundant manipulators. On the one hand, tasks are designated in workspace coordinates: to rotate doors about fixed axes, to slide drawers along fixed trajectories, or to hold objects level during transport. On the other hand, joint-space planning gives alternative paths that use redundant degrees of freedom (DOFs) to avoid obstacles or satisfy additional goals while performing a task. We demonstrate that our methods are faster and more invariant to parameter choices than the techniques that exist.

Published in:

IEEE Transactions on Robotics  (Volume:26 ,  Issue: 3 )