By Topic

Coordinating Power Control and Performance Management for Virtualized Server Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaorui Wang ; University of Tennessee, Knoxville ; Yefu Wang

Today's data centers face two critical challenges. First, various customers need to be assured by meeting their required service-level agreements such as response time and throughput. Second, server power consumption must be controlled in order to avoid failures caused by power capacity overload or system overheating due to increasing high server density. However, existing work controls power and application-level performance separately, and thus, cannot simultaneously provide explicit guarantees on both. In addition, as power and performance control strategies may come from different hardware/software vendors and coexist at different layers, it is more feasible to coordinate various strategies to achieve the desired control objectives than relying on a single centralized control strategy. This paper proposes Co-Con, a novel cluster-level control architecture that coordinates individual power and performance control loops for virtualized server clusters. To emulate the current practice in data centers, the power control loop changes hardware power states with no regard to the application-level performance. The performance control loop is then designed for each virtual machine to achieve the desired performance even when the system model varies significantly due to the impact of power control. Co-Con configures the two control loops rigorously, based on feedback control theory, for theoretically guaranteed control accuracy and system stability. Empirical results on a physical testbed demonstrate that Co-Con can simultaneously provide effective control on both application-level performance and underlying power consumption.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:22 ,  Issue: 2 )