Cart (Loading....) | Create Account
Close category search window
 

Local map generation using position and communication history of mobile nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Minamimoto, S. ; Grad. Sch. of Inf. Sci. & Technol., Osaka Univ., Suita, Japan ; Fujii, S. ; Yamaguchi, H. ; Higashinoz, T.

In this paper, we propose an algorithm to estimate 2D shapes and positions of obstacles such as buildings using GPS and wireless communication history of mobile nodes. Our algorithm enables quick recognition of geography, which is required in broader types of activities such as rescue activities in emergency situations. Nevertheless, detailed building maps might not be immediately available in private regions such as large factories, warehouses and universities, or prepared maps might not be effective due to collapse of buildings or roads in disaster situations. Some methodologies adopt range measurement sensors like infra-red and laser sensors or cameras. However, they require dedicated hardware and actions for the measurement. Meanwhile, the proposed method can create a rough 2D view of buildings and roads using only wireless communication history between mobile nodes and position history from GPS receivers. The results from the experiment conducted in 150 m×190 m region on our university campus assuming rescue and treatment actions by 15 members have shown that our method could generate a local map with 85% accuracy within 350 seconds. We have also validated the performance of our algorithm by simulations with various settings.

Published in:

Pervasive Computing and Communications (PerCom), 2010 IEEE International Conference on

Date of Conference:

March 29 2010-April 2 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.