By Topic

MediAlly: A provenance-aware remote health monitoring middleware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chowdhury, A.R. ; Sch. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA ; Falchuk, B. ; Misra, A.

This paper presents MediAlly, a middleware for supporting energy-efficient, long-term remote health monitoring. Data is collected using physiological sensors and transported back to the middleware using a smart phone. The key to MediAlly's energy efficient operations lies in the adoption of an Activity Triggered Deep Monitoring (ATDM) paradigm, where data collection episodes are triggered only when the subject is determined to possess a specified context. MediAlly supports the on-demand collection of contextual provenance using a novel low-overhead provenance collection sub-system. The behaviour of this sub-system is configured using an application-defined context composition graph. The resulting provenance stream provides valuable insight while interpreting the `episodic' sensor data streams. The paper also describes our prototype implementation of MediAlly using commercially available devices.

Published in:

Pervasive Computing and Communications (PerCom), 2010 IEEE International Conference on

Date of Conference:

March 29 2010-April 2 2010