By Topic

Resource optimisation in a wireless sensor network with guaranteed estimator performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shi, L. ; Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Capponi, A. ; Johansson, K.H. ; Murray, R.M.

New control paradigms are needed for large networks of wireless sensors and actuators in order to efficiently utilise system resources. In this study, the authors consider the problem of discrete-time state estimation over a wireless sensor network. Given a tree that represents the sensor communications with the fusion centre, the authors derive the optimal estimation algorithm at the fusion centre, and provide a closed-form expression for the steady-state error covariance matrix. They then present a tree reconfiguration algorithm that produces a sensor tree that has low overall energy consumption and guarantees a desired level of estimation quality at the fusion centre. The authors further propose a sensor tree construction and scheduling algorithm that leads to a longer network lifetime than the tree reconfiguration algorithm. Examples are provided throughout the paper to demonstrate the algorithms and theory developed.

Published in:

Control Theory & Applications, IET  (Volume:4 ,  Issue: 5 )