By Topic

A Bit-Stuffing Algorithm for Crosstalk Avoidance in High Speed Switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cheng-Shang Cheng ; Inst. of Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Jay Cheng ; Tien-Ke Huang ; Xuan-Chao Huang
more authors

Motivated by the design of high speed switching fabrics, in this paper we propose a bit-stuffing algorithm for generating forbidden transition codes to mitigate the crosstalk effect between adjacent wires in long on-chip buses. We first model a bus with forbidden transition constraints as a forbidden transition channel, and derive the Shannon capacity of such a channel. Then we perform a worst case analysis and a probabilistic analysis for the bit-stuffing algorithm. We show by both theoretic analysis and simulations that the coding rate of the bit stuffing encoding scheme for independent and identically distributed (i.i.d.) Bernoulli input traffic is quite close to the Shannon capacity, and hence is much better than those of the existing forbidden transition codes in the literature, including the Fibonacci representation.

Published in:

INFOCOM, 2010 Proceedings IEEE

Date of Conference:

14-19 March 2010