By Topic

Optimal Scheduling of Multicluster Tools With Constant Robot Moving Times, Part II: Tree-Like Topology Configurations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wai Kin Victor Chan ; Department of Decision Sciences and Engineering Systems, Rensselaer Polytechnic Institute, Troy, NY, USA ; Shengwei Ding ; Jingang Yi ; Dezhen Song

In this paper, we analyze optimal scheduling of a tree-like multicluster tool with single-blade robots and constant robot moving times. We present a recursive minimal cycle time algorithm to reveal a multi-unit resource cycle for multicluster tools under a given robot schedule. For a serial-cluster tool, we provide a closed-form formulation for the minimal cycle time. The formulation explicitly provides the interaction relationship among clusters. We further present decomposition conditions under which the optimal scheduling of multicluster becomes much easier and straightforward. Optimality conditions for the widely used robot pull schedule are also provided. An example from industry production is used to illustrate the analytical results. The decomposition and optimality conditions for the robot pull schedule are also illustrated by Monte Carlo simulation for the industrial example.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:8 ,  Issue: 1 )