By Topic

Neural networks applied to preventive control measures for the dynamic security of isolated power systems with renewables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. N. Fidalgo ; INESC, Porto, Portugal ; J. A. Pecas Lopes ; V. Miranda

This paper presents an artificial neural network (ANN) based approach for the definition of preventive control strategies of autonomous power systems with a large renewable power penetration. For a given operating point, a fast dynamic security evaluation for a specified wind perturbation is performed using an ANN. If insecurity is detected, new alternative stable operating points are suggested, using a hybrid ANN-optimization approach that checks several feasible possibilities, resulting from changes in power produced by diesel and wind generators, and other combinations of diesel units in operation. Results obtained from computer simulations of the real power system of Lemnos (Greece) support the validity of the developed approach

Published in:

IEEE Transactions on Power Systems  (Volume:11 ,  Issue: 4 )