By Topic

Modeling and Simulation of Wave Energy Generation Plants: Output Power Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Amundarain, M. ; Dept. of Autom. Control & Syst. Eng., Univ. of the Basque Country, Bilbao, Spain ; Alberdi, M. ; Garrido, A.J. ; Garrido, I.

The control and simulation of the power delivered to the grid are becoming an important topic, particularly when the number of distributed power generation systems increases. In this paper, two different control schemes for an oscillating-water-column Wells-turbine-generator module are simulated, implemented, and compared. In the first method, the control system does appropriately adapt the slip of the induction generator according to the pressure drop entry in order to maximize the generated power, while in the second method, a traditional proportional-integral-derivative-based control is implemented in order to deal with the desired power-reference-tracking problem. It will be shown how the controllers avoid the stalling behavior and that the average power of the generator fed into the grid is significantly higher in the controlled cases than in the uncontrolled one while providing the desired output power.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 1 )