By Topic

Simplified Modeling of a DFIG for Transient Studies in Wind Power Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Alvaro Luna ; Department of Electrical Engineering, Technical University of Catalonia (UPC), Barcelona , Spain ; F. K. A. Lima ; David Santos ; Pedro Rodriguez
more authors

Improving the fault ride-through (FRT) capability of doubly fed induction generators (DFIGs) in wind power applications is a very important challenge for the wind power industry. The mathematical models of such generators enable us to analyze their response under generic conditions. However, their mathematical complexity does not contribute to simplifying the analysis of the system under transient conditions and hence does not help in finding straightforward solutions for enhancing their FRT. This paper presents a simplified model of the DFIG, which has been extracted from the classical fifth-order model, which can accurately estimate the behavior of the system while significantly reducing its complexity. In this paper, the mathematical deduction of this model will be presented, and simulations and experimental results will be shown to demonstrate the accuracy and reliability of the proposed algorithm.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:58 ,  Issue: 1 )