By Topic

Performance Evaluation of Convolution on the Cell Broadband Engine Processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ismail, L. ; Coll. of Inf. Technol., UAE Univ., Al-Ain, United Arab Emirates ; Guerchi, D.

Convolution represents a major computational load for many scientific and engineering applications, including seismic surface simulations and seismic imaging. Since convolution presents a heavy computational load, increasing its efficiency can significantly enhance the performance of associated applications. In this work, we present an in-depth analysis of the convolution algorithm and its complexity in order to develop adequate parallel algorithms. The implementation of these algorithms and their evaluation on the IBM Cell Broadband Engine (BE) processor reveals the gains and losses achieved by parallelizing the direct convolution. The performance results show that despite the complexity of the convolution processing, a speedup gain of at least 71.4 is obtained. The parallel vectorized algorithm requires the development effort of considering three independent vectorization strategies. Given the wide availability of Cell processors, the proposed parallelization approach can be widely adopted by any convolution-based application.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 2 )