Cart (Loading....) | Create Account
Close category search window
 

Variable-Density Parallel Imaging With Partially Localized Coil Sensitivities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Çukur, T. ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Santos, J.M. ; Pauly, J.M. ; Nishimura, D.G.

Partially parallel imaging with localized sensitivities is a fast parallel image reconstruction method for both Cartesian and non-Cartesian trajectories, but suffers from aliasing artifacts when there are deviations from the assumption of perfect localization. Such reconstructions would normally crop the individual coil images to remove the artifacts prior to combination. However, the sampling densities in variable-density k-space trajectories support different field-of-views for separate regions in k -space. In fact, the higher sampling density of low frequencies can be used to reconstruct a bigger field-of-view without introducing aliasing artifacts and the resulting image signal-to-noise ratio (SNR) can be improved. A novel, fast variable-density parallel imaging method is presented, which reconstructs different field-of-views from separate frequencies according to the local sampling density in k-space. Aliasing-suppressed images can be produced with high SNR-efficiency without the need for accurate estimation of coil sensitivities and complex or iterative computations.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:29 ,  Issue: 5 )

Date of Publication:

May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.