By Topic

Optimized Block-Based Connected Components Labeling With Decision Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Costantino Grana ; Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Modena e Reggio Emilia, Modena, Italy ; Daniele Borghesani ; Rita Cucchiara

In this paper, we define a new paradigm for eight-connection labeling, which employes a general approach to improve neighborhood exploration and minimizes the number of memory accesses. First, we exploit and extend the decision table formalism introducing or-decision tables, in which multiple alternative actions are managed. An automatic procedure to synthesize the optimal decision tree from the decision table is used, providing the most effective conditions evaluation order. Second, we propose a new scanning technique that moves on a 2 ?? 2 pixel grid over the image, which is optimized by the automatically generated decision tree. An extensive comparison with the state of art approaches is proposed, both on synthetic and real datasets. The synthetic dataset is composed of different sizes and densities random images, while the real datasets are an artistic image analysis dataset, a document analysis dataset for text detection and recognition, and finally a standard resolution dataset for picture segmentation tasks. The algorithm provides an impressive speedup over the state of the art algorithms.

Published in:

IEEE Transactions on Image Processing  (Volume:19 ,  Issue: 6 )