By Topic

Transmission-Lines Shielding Failure-Rate Calculation by Means of 3-D Leader Progression Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohammad Reza Bank Tavakoli ; Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran ; Behrooz Vahidi

In this paper, by creating a 3-D model of power-line equipment and lightning leader progression models, an alternate procedure for calculating the shielding failure rate (SFR) of transmission lines is presented. The stepping nature of lightning downward leader is modeled according to field observations with the use of discrete line charges approaching the earth. A simplified self-consistent model for an upward connecting leader is also adopted to find the position of lightning incidence to the transmission line. The required electric field in an environment is computed by using the charge simulation method. A comparison has been made between the SFR calculated by proposed method and the values calculated by conventional electrogeometrical model. In addition, different previously proposed incidence criteria are implemented and compared. Some comparisons are also made between the calculated SFR and available field data for selected overhead lines.

Published in:

IEEE Transactions on Power Delivery  (Volume:26 ,  Issue: 2 )