System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Stochastic service guarantee analysis based on time-domain models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jing Xie ; Department of Telematics, Norwegian University of Science and Technology, Trondheim, Norway ; Yuming Jiang

Stochastic network calculus is a theory for stochastic service guarantee analysis of computer communication networks. In the current stochastic network calculus literature, its traffic and server models are typically defined based on the cumulative amount of traffic and cumulative amount of service respectively. However, there are network scenarios where the applicability of such models is limited, and hence new ways of modeling traffic and service are needed to address this limitation. This paper presents time-domain models and results for stochastic network calculus. Particularly, we define traffic models, which are defined based on probabilistic lower-bounds on cumulative packet inter-arrival time, and server models, which are defined based on probabilistic upper-bounds on cumulative packet service time. In addition, examples demonstrating the use of the proposed time-domain models are provided. On the basis of the proposed models, the five basic properties of stochastic network calculus are also proved, which implies broad applicability of the proposed time-domain approach.

Published in:

Modeling, Analysis & Simulation of Computer and Telecommunication Systems, 2009. MASCOTS '09. IEEE International Symposium on

Date of Conference:

21-23 Sept. 2009