By Topic

Image-Quality-Based Adaptive Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Harin Sellahewa ; Department of Applied Computing, The University of Buckingham, Buckingham, U.K. ; Sabah A. Jassim

The accuracy of automated face recognition systems is greatly affected by intraclass variations between enrollment and identification stages. In particular, changes in lighting conditions is a major contributor to these variations. Common approaches to address the effects of varying lighting conditions include preprocessing face images to normalize intraclass variations and the use of illumination invariant face descriptors. Histogram equalization is a widely used technique in face recognition to normalize variations in illumination. However, normalizing well-lit face images could lead to a decrease in recognition accuracy. The multiresolution property of wavelet transforms is used in face recognition to extract facial feature descriptors at different scales and frequencies. The high-frequency wavelet subbands have shown to provide illumination-invariant face descriptors. However, the approximation wavelet subbands have shown to be a better feature representation for well-lit face images. Fusion of match scores from low- and high-frequency-based face representations have shown to improve recognition accuracy under varying lighting conditions. However, the selection of fusion parameters for different lighting conditions remains unsolved. Motivated by these observations, this paper presents adaptive approaches to face recognition to overcome the adverse effects of varying lighting conditions. Image quality, which is measured in terms of luminance distortion in comparison to a known reference image, will be used as the base for adapting the application of global and region illumination normalization procedures. Image quality is also used to adaptively select fusion parameters for wavelet-based multistream face recognition.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:59 ,  Issue: 4 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal