By Topic

In Vivo Supervised Analysis of Stent Reendothelialization From Optical Coherence Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kauffmann, C. ; Dept. of Med. Imaging, Notre-Dame Hosp., Montreal, QC, Canada ; Motreff, P. ; Sarry, L.

The aim of this study is to interactively assess reendothelialization of stents at an accuracy of down to a few micrometer by analyzing endovascular optical coherence tomography (OCT) sequences. Vessel wall and stent struts are automatically detected by using morphological, gradient, and symmetry operators coupled with active contour models; alerts are issued to ask for user supervision over some extreme irregular geometries caused by thrombotic lesions or dissections. A complete distance map is then computed from sparse distances measured between wall and struts. Missing values are interpolated by thin-plate spline (TPS) functions. Accuracy and robustness are increased by taking into account the inhomogeneity of data points and integrating in the same framework orthogonalized forward selection of support points, optimal selection of regularization parameters by generalized cross-validation, and rejection of detection outliers. Validation is performed on simulated data, phantom acquisitions and 11 typical in vivo OCT sequences. The comparison against manual expert measurements demonstrates a bias of the order of OCT resolution (less than 10 ??m) and a standard deviation of the order of the strut width (less than 150 ??m ).

Published in:

Medical Imaging, IEEE Transactions on  (Volume:29 ,  Issue: 3 )