By Topic

Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yardibi, T. ; Univ. of Florida, Gainesville, FL, USA ; Jian Li ; Stoica, Petre ; Ming Xue
more authors

Array processing is widely used in sensing applications for estimating the locations and waveforms of the sources in a given field. In the absence of a large number of snapshots, which is the case in numerous practical applications, such as underwater array processing, it becomes challenging to estimate the source parameters accurately. This paper presents a nonparametric and hyperparameter, free-weighted, least squares-based iterative adaptive approach for amplitude and phase estimation (IAA-APES) in array processing. IAA-APES can work well with few snapshots (even one), uncorrelated, partially correlated, and coherent sources, and arbitrary array geometries. IAA-APES is extended to give sparse results via a model-order selection tool, the Bayesian information criterion (BIC). Moreover, it is shown that further improvements in resolution and accuracy can be achieved by applying the parametric relaxation-based cyclic approach (RELAX) to refine the IAA-APES&BIC estimates if desired. IAA-APES can also be applied to active sensing applications, including single-input single-output (SISO) radar/sonar range-Doppler imaging and multi-input single-output (MISO) channel estimation for communications. Simulation results are presented to evaluate the performance of IAA-APES for all of these applications, and IAA-APES is shown to outperform a number of existing approaches.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:46 ,  Issue: 1 )