By Topic

Direct-Matrix-Converter-Based Drive for a Three-Phase Open-End-Winding AC Machine With Advanced Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ranjan K. Gupta ; Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA ; Krushna K. Mohapatra ; Apurva Somani ; Ned Mohan

This paper describes how matrix converters (MCs), one at each side of a three-phase open-end-winding ac machine, achieve the following features simultaneously: 1) machine phase voltage up to 1.5 times the input phase voltage in the linear modulation mode, therefore extending the rated torque operation region to 150% of the rated speed of the machine; 2) peak voltage stress across the slot insulation which is limited to the peak of input phase voltage, i.e., a factor of at least √3 lower as compared to the conventional back-to-back converter; 3) controllable grid power factor to be leading, lagging, or unity; and 4) elimination of the instantaneous common-mode voltage at the machine terminals, therefore eliminating the bearing current due to switching common-mode voltage and reduction in the conducted electromagnetic interference. To simultaneously achieve the aforementioned capabilities, a space vector pulsewidth modulation technique is described in which the MCs are modulated using only rotating space vectors. A hardware prototype of the drive system is built. Experimental results from this hardware prototype verify the operation and claims of the drive system.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:57 ,  Issue: 12 )