By Topic

A Kernel-Based Nonparametric Regression Method for Clutter Removal in Infrared Small-Target Detection Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yanfeng Gu ; School of Electronics and Information Technique, Harbin Institute of Technology, Harbin, China ; Chen Wang ; BaoXue Liu ; Ye Zhang

Small-target detection in infrared imagery with a complex background is always an important task in remote-sensing fields. Complex clutter background usually results in serious false alarm in target detection for low contrast of infrared imagery. In this letter, a kernel-based nonparametric regression method is proposed for background prediction and clutter removal, furthermore applied in target detection. First, a linear mixture model is used to represent each pixel of the observed infrared imagery. Second, adaptive detection is performed on local regions in the infrared image by means of kernel-based nonparametric regression and two-parameter constant false alarm rate (CFAR) detector. Kernel regression, which is one of the nonparametric regression approaches, is adopted to estimate complex clutter background. Then, CFAR detection is performed on “pure” target-like region after estimation and removal of clutter background. Experimental results prove that the proposed algorithm is effective and adaptable to small-target detection under a complex background.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:7 ,  Issue: 3 )