Cart (Loading....) | Create Account
Close category search window

A Miniaturized Mechatronic System Inspired by Plant Roots for Soil Exploration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Mazzolai, B. ; Center for MicroBioRobotics, Italian Inst. of Technol., Pisa, Italy ; Mondini, A. ; Corradi, P. ; Laschi, C.
more authors

This paper describes the principles and theoretical investigations, supported by experimental measurements, aimed at designing and developing a novel mechatronic system for soil exploration, inspired by the apical part of the plant roots, named apex. Each single plant root has to move through the substrate, orienting itself along the gravity vector and locating water and nutrients. In the same way, the mechatronic apex can steer in all directions and it embeds a gravity sensor, a soil moisture gradient detector, as well as the electronics for sensory data acquisition and steering control. A bio-inspired algorithm reproducing the gravitropism and hydrotropism behaviors, typical of plants, was developed and tested on a purposive prototype of the mechatronic apex system, actuated by hydraulic pumps. Moreover, the design and testing of a novel bio-inspired osmotic actuator module, composed of three cells separated by couples of osmotic and ion-selective membranes, is also presented. Preliminary prototypes developed in acrylic material for testing the gravitropism and hydrotropism behaviors are shown.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:16 ,  Issue: 2 )

Date of Publication:

April 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.