By Topic

A Probabilistic Model for Robust Localization Based on a Binaural Auditory Front-End

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tobias May ; Institute of Physics, University of Oldenburg, Oldenburg, Germany ; Steven van de Par ; Armin Kohlrausch

Although extensive research has been done in the field of machine-based localization, the degrading effect of reverberation and the presence of multiple sources on localization performance has remained a major problem. Motivated by the ability of the human auditory system to robustly analyze complex acoustic scenes, the associated peripheral stage is used in this paper as a front-end to estimate the azimuth of sound sources based on binaural signals. One classical approach to localize an acoustic source in the horizontal plane is to estimate the interaural time difference (ITD) between both ears by searching for the maximum in the cross-correlation function. Apart from ITDs, the interaural level difference (ILD) can contribute to localization, especially at higher frequencies where the wavelength becomes smaller than the diameter of the head, leading to ambiguous ITD information. The interdependency of ITD and ILD on azimuth is a complex pattern that depends also on the room acoustics, and is therefore learned by azimuth-dependent Gaussian mixture models (GMMs). Multiconditional training is performed to take into account the variability of the binaural features which results from multiple sources and the effect of reverberation. The proposed localization model outperforms state-of-the-art localization techniques in simulated adverse acoustic conditions.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:19 ,  Issue: 1 )