By Topic

A Low-Cost and Accurate Indoor Localization Algorithm Using Label Propagation Based Semi-supervised Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shaoshuai Liu ; Inst. of Comput. Technol., Chinese Acad. of Sci., Beijing, China ; Haiyong Luo ; Shihong Zou

We present a novel approach to indoor wireless localization using label propagation based on semi-supervised learning. Our aim is to reduce the effort of collecting labeled data in the offline training phrase, which are expensive to obtain. This learning algorithm combines labeled and unlabeled data in learning process to fully realize a global consistency assumption: similar data should have similar labels, which has intimate connections with random walks to propagate label through the dataset along high density areas defined by unlabeled data. We test our algorithm in 802.11 wireless LAN environments, and demonstrate the advantage of our approach in both accuracy and its ability to utilize a much smaller set of labeled training data.

Published in:

Mobile Ad-hoc and Sensor Networks, 2009. MSN '09. 5th International Conference on

Date of Conference:

14-16 Dec. 2009