By Topic

Systematic Construction of Real Lapped Tight Frame Transforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Aliaksei Sandryhaila ; Dept. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh ; Amina Chebira ; Christina Milo ; Jelena Kovacevic
more authors

We present a constructive algorithm for the design of real lapped equal-norm tight frame transforms. These transforms can be efficiently implemented through filter banks and have recently been proposed as a redundant counterpart to lapped orthogonal transforms, as well as an infinite-dimensional counterpart to harmonic tight frames. The proposed construction consists of two parts: First, we design a large class of new real lapped orthogonal transforms derived from submatrices of the discrete Fourier transform. Then, we seed these to obtain real lapped tight frame transforms corresponding to tight, equal-norm frames. We identify those frames that are maximally robust to erasures, and show that our construction leads to a large class of new lapped orthogonal transforms as well as new lapped tight frame transforms.

Published in:

IEEE Transactions on Signal Processing  (Volume:58 ,  Issue: 5 )