By Topic

Predictive Torque Control of an Induction Machine Fed by a Matrix Converter With Reactive Input Power Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vargas, R. ; ABB Switzerland, R&D Traction Converters, Austrasse, Switzerland ; Ammann, U. ; Hudoffsky, B. ; Rodriguez, J.
more authors

This paper presents a new control method for a matrix-converter-based induction machine drive. A discrete model of the converter, motor, and input filter is used to predict the behavior of torque, flux, and input power to the drive. The switching state that optimizes the value of a quality function, used as the evaluation criterion, is selected and applied during the next discrete-time interval. Experimental results confirm that the proposed strategy gives high-quality control of the torque, flux, and power factor with a fast dynamic control response. The key implementation issues are analyzed in depth to give an overview of the realization aspects of the proposed algorithm.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 6 )