We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

IBM POWER6 microarchitecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Le, H.Q. ; IBM Systems and Technology Group, 11400 Burnet Road, Austin, Texas 78758, USA ; Starke, W.J. ; Fields, J.S. ; O'Connell, F.P.
more authors

This paper describes the implementation of the IBM POWER6™ microprocessor, a two-way simultaneous multithreaded (SMT) dual-core chip whose key features include binary compatibility with IBM POWER5™ microprocessor-based systems; increased functional capabilities, such as decimal floating-point and vector multimedia extensions; significant reliability, availability, and serviceability enhancements; and robust scalability with up to 64 physical processors. Based on a new industry-leading high-frequency core architecture with enhanced SMT and driven by a high-throughput symmetric multiprocessing (SMP) cache and memory subsystem, the POWER6 chip achieves a significant performance boost compared with its predecessor, the POWER5 chip. Key extensions to the coherence protocol enable POWER6 microprocessor-based systems to achieve better SMP scalability while enabling reductions in system packaging complexity and cost.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:51 ,  Issue: 6 )