By Topic

3D chip stacking with C4 technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Dang, B. ; IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598, USA ; Wright, S.L. ; Andry, P.S. ; Sprogis, E.J.
more authors

Three-dimensional (3D) integration technology promises to continue enhancing integrated-circuit system performance with high bandwidth, low latency, low power, and a small form factor for a variety of applications. In this work, conventional C4 (controlled-collapse chip connection) technology is studied for robust interconnection between stacked thin chips. Various solder hierarchies to enable 3D chip stacking and packaging are investigated. Examples are presented to compare stacking schemes with sequential and parallel reflow. Chips as thin as 90 µm are stacked using conventional chip-placement and reflow processes, and the associated process challenges are investigated and discussed. Warpage of the thin chips is measured on various substrates. Rework of the chip stack has also been demonstrated through a temporary chip attachment operation, and the scalability of reworkable C4 is investigated.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:52 ,  Issue: 6 )