By Topic

Situation assessment via multi-target identification and classification in radar sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Le, H.-S.T. ; Dept. of Electr. Eng., Univ. of Texas at Arlington, Arlington, TX, USA ; Qilian Liang

DoD has defined three levels of data fusion for network centric warfare (NCW). Level 1 data fusion combines data from single or multiple sensors and sources to provide the best estimate of objects and events in the battlespace. Level 2 data fusion focuses on situation assessment. Level 3 data fusion is threat assessment. To facilitate situation assessment, we investigate the problem of jointly classifying and identifying multiple targets in radar sensor networks where the maximum number of categories and the maximum number of targets in each category are obtained a priori based on statistical data. However, the actual number of targets in each category and the actual number of target categories being present at any given time are assumed unknown. It is assumed that a given target belongs to one category and one identification number. The target signals are modeled as zero-mean complex Gaussian processes. We propose a joint multi-target identification and classification (JMIC) algorithm for radar surveillance using cognitive radars. The existing target categories are first classified and then the targets in each category are accordingly identified. Simulation results are presented to evaluate the feasibility and effectiveness of the proposed JMIC algorithm in a query surveillance region.

Published in:

Military Communications Conference, 2009. MILCOM 2009. IEEE

Date of Conference:

18-21 Oct. 2009