By Topic

FlockStream: A Bio-Inspired Algorithm for Clustering Evolving Data Streams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Agostino Forestiero ; Inst. for High Performance Comput. & Networking, ICAR-CNR, Rende, Italy ; Clara Pizzuti ; Giandomenico Spezzano

Existing density-based data stream clustering algorithms use a two-phase scheme approach consisting of an online phase, in which raw data is processed to gather summary statistics, and an offline phase that generates the clusters by using the summary data. In this paper we propose a data stream clustering method based on a multi-agent system that uses a decentralized bottom-up self-organizing strategy to group similar data points. Data points are associated with agents and deployed onto a 2D space, to work simultaneously by applying a heuristic strategy based on a bio-inspired model, known as flocking model. Agents move onto the space for a fixed time and, when they encounter other agents into a predefined visibility range, they can decide to form a flock if they are similar. Flocks can join to form swarms of similar groups. This strategy allows to merge the two phases of density-based approaches and thus to avoid the offline cluster computation, since a swarm represents a cluster. Experimental results show the capability of the bio-inspired approach to obtain very good results on real and synthetic data sets.

Published in:

2009 21st IEEE International Conference on Tools with Artificial Intelligence

Date of Conference:

2-4 Nov. 2009